
A Rationale and Description of the BASIC Instructional Program

by

Avron Barr, Marian Beard, and Richard Co Atkinson

This research was supported jointly by:

Office of Naval Research
Psychological Sciences Division
Personnel and Training Research Programs (Code 458)
Contract Authority Number: NR 154-326
Scientific Officers: Dr. Marshall Farr and Dr, Joseph Young

and

Advanced Research Projects Agency
ARPA Order Number: 2284 dated 30 August 1972
Program Code Number: 3D20

Contract number:

N00014-67-A-0012-0054
1 August 1972 - 31 July 1974

Principal Investigator:

Richard C, Atkinson
Professor of Psychology
Institute for Mathematical Studies in the Social Sciences
Stanford University
Stanford, California 94305
(415) 497-4117

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agency or the Office of Naval Research or the U, S,
Government,

Approved for public release; distribution unlimited,

Reproduction in whole or in part is permitted
for any purpose of the U. S, Government,

SECURITY CLASSIFICATION OF THIS PAGE (Wh D.t. E te d)en n ..
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSiON NO. •• RECIPIENT'S CATALO(;,NUMBER

,

Technical Report No. 5
,

TYPE OF REPORT & PERIOD COVERED' .. TITLE (and Subtitle) ••
A Rationale and Description of the BASIC Technical Report

Instructional Program
•• PE"'ORMIN G ORG .. REPORT _NUMBER

Technical Report No. 228
7. AUTHOR(a) •• CONTRACT ORGR~NT NUMBER(e)

"

Avron Barr, Marian Beard, and Richard C. Atkinson N00014-67 -A-0012-0054

,. PERFORMING ORGANIZATION NAME AND ADDRESS '0. PROGRA'M ELEMENT, PROJECT, TASK
t.,REA a WORK UNIT NUMBERS.

Institute for Mathematical Studies in the Social ll53N
Sciences - Stanford University RR 042-0; RR 042-0-0

Stanford, California 94305 NR 154-326
• 1. CONTROLLING OFFiCE NAME AND AODRESS ... REPORT DATE

Personnel and Training Research Programs April 22, 1974
Office of Naval Research (Code 458) 1). NUMBE" OF PAGES

Arlington, VA 22217 50 ,

, ,.. MONITORING AGENCY NAME a ADDRESS(1l dllierent Irom Controllln, OWee) ... SECURITY CLASS. (01 thl. rllport)

Unclassified
"

IS., DECL AS51 FICATION/OOWN GRADING
SCHEDULE

, ,.. DISTRIBUTION STATEMENT (01 this Report) ,
Approved for public release; distribution unlimited. ,.

"

,
17• DISTRIBUTION STATEMENT (01 the .betract enter.d In BloeJc 20. II dllferent from R.port)

•

••• SUPPLEMENTARY NOTES

,

,"

••• KEY WORDS (Contlnu. on r.v.rs• • Ide II n.c....". Md Id.ntlfy by block numb.r)

_.

BASIC, Computer-Assisted Instruction (CAI) , computer programming, computer
science education, instruction control strategy, tutorial CAI .

'0. ABSTRACT (Continue on r.ver•• • Ide If n.c••••ry and Identify by block numb.r)

A course in computer programming is bejng deve Joped as- a vehicle for
"

research in tutorial modes of computer-assisted instruction. Methods for
monitoring and aiding the student as he works on interesting programming .
problems are employed. ' The problems are individually selected via an opti-
mization scheme based on a model of the student's ability and difficulties.

"

" "

••

DO FORM
'·JAN 73 1473 EDITION OF t NOV fjS IS O_SOLETE

SIN .0,102·0,14"6601.1
UNCLASSIFIED

SECURITY CLASSllflCATION 0' THIS PAGE (Wh.n V.ta Bnt.red)

.. l;.\...UI.l:ITY CLASS,FICATION OF THIS PAGE(K'hen Data Bntered)

After a brief oVl"rview of work done at Stanford{ntu.torial CAI and the
teaching of procedural skills, the fUnctional elements of the BASICInstruc~

tional Program, its BASIC interpreter, curriculum, solution analysis, and
interactive assistance during programming, are described.

At BIP's core is an infonnation network which embodies the interrelations
of the concepts, skills, problems, remedial lessons, hints, BASIC commands,
and manual references. With the data stored in the student history, the net
work enablesBIP to model the student's state of knowledge, and to make problem
selections with some relevance. The sophistication of these modelling
techniques are the main thrust of our researc.h.

SECURITY CLASSIFICATION OF THIS PAGE(1f'Iten D.t. Entered)

Summary

A BASIC Instructional Program is being deyeloped as a veh~cle for

research in tutorial modes of computer-assisted instructiQn(CAI).

Several design features will be appropriate to training in other

technical areas and applicable in other instructional settings where

the development of analytic and problem-Bolving skills is a. goaL ..

Methods are incorporated for monitoring and aiding the student as

h~ works on progr~mming problems in the BASIC language. The

instructional program developed can be used to investigate s~hemes for

optimizing problem presentation and giving assistance dur~ngproblem

solving based on a model of the student's~bl1ities and difficulties.

Previous experience in the instructional and technical .aspects of

teaching a programming language indicates that a course in.c<lInput,.r

programming can be designed to help the student. acquire progranuning

concepts in a personalized and efficient manner as he develops skills

at increasingly advanced levels.

This research is funded by Personnel Training and Research
Programs, Office of Naval Research. During these developmental
months, we have received considerable cooperation from the staffs of
the pilot institutions, notably Professor Carl Grame of DeAnza College
and Dr. Paul Lorton; Jr. of the University of San Francisco.

1

A major goal of the research project is to increase the

sophistication with which the instructional program monitors the

student's work and responds to it with appropriate hints and prompts.

One 'aspect of such work is the utilization of algorithms for checking

the correctness of a student procedure. Limited but sufficient

program verification is possible through simulated execution of the

program on test data stored with each problem. Within the

controllable context of instruction, where the problems to be solved

are predetermined and their solutions known, simulated execution of

the student's program can effectively determine its closeness to a

stored model solution.

The BASIC Instructional Program (BIP) is written in SAIL

(VanLehn, 1973), a versatile, ALGOL-like language; implemented

exclusively at present on the DEC PDP-10. SAIL includes a flexible

associative sublanguage called LEAP (Feldman, Low, Swinehart, &

Taylor, 1972), which was used extensively to build BIP's information

network. The course is now running on the PDP~10 TENEX timesharing

system at IMSSS and is presently being offered as an introductory

programming course at DeAnza College ,in Cupertino and the University

of San, Francisco. The collected data are being used to modify the

problems and the "help" sequences in preparation for a more controlled

experimental situation planned for the next academic year.

2

Overview of IMSSS Research in Tutorial CAl

The Institute has been involved in CAl projects in computer

programming and in tutorial CAl in other technical areas since 1968.

Work in teaching computer programming began with the development of a

high-school-level CAl ,course in machine language programming (Lorton &

Slimick, 1969). The projeCt, called SIMPER, taught programming via a

simulated three-register mach1ne with a variable instruction set;

Ll;lter, lessons in the syntax of the",BASIC language were added to the

curriculum. Programming problems using BASIC were presented, but the

student solved them by linking toa commercial BASIC interpreter,

without receiving assistance or analysis of his efforts from the

instructional program.

In 1970 the Institute developed a much larger CAl, curriculum for

a new course to teach the AID programming language at the introductory

undergraduate level. This course has been used in colleges and junior

c<;>lleges as a successful introduction t<;> c01Jlputer programming (Friend,

1973; Beard, Lorton, Searle, & Atkinson, 1973). However, it is a

linear, "frame~oriented" CAL program and cannot provide individualized

instruction during the problem~solving activity itself. After working

through lesson segments on such topics as syntax and expressions, the

student is assigned a problem to sOlve in AID. He must then leave the

instructional program, call 'up a separate AID interpreter, perform the

required programming task, and return to the instructional program

3

with an answer. As he deveaops his program directly with AID,his

only source of assistance is the minimally informative error messages

provided by the interpreter.

In recent years, developments in interactive CAL and in

artificial intelligence have enabled teaching programs to deal more.

effectively with the subject matter they purport to teach, in effect,

to "know" their subject better. The generative CAL programs developed

by Carbonell and others (Carbonell, 1970; Collins, Carbonell, &

Warnock,.· 1973) employ a .semantic network interrelating a large factual

data base.. Instruction then takes the form of a dialogue in .which the

program can both a) construct,present, and evaluate the answerstoa

multitude of· questions, and b) answer questions posed by the student.

An interesting generative CAL program in digital logic and machine~

language programming has been developed by Elliot Koffman at the

University of Connecticut (Koffman & Blount, 1973). Another course in

programming is being written by Jurg Nievergelt for the. PLATO IV

system at, the University of Illinois (Nievergelt, Reingold, & Wilcox,

1973) •

Two CAL courses developed at IMSSS are capable of dealing in.a

sophisticated way, both with their subject matter ,and with the

student. These courses provide instructive interaction throughout the

problem-solving activity by performing operations specified by the

student, evaluating the effect of the operations, and, on request,

suggesting a next step in the solution.

4

The first of these, a CAl program for teaching elementary

mathematical logic, is described in a report by Adele Goldberg (1973).

An experimental version of the program employed a heuristic theorem

prover as a proof~analyzer to. generate appropriate dialogue with

students who needed help with a proof. "The proof.,.analyzer mocks the

adaptive behavior of a human tutor; it can determine relevant hints

when a student requires help in completing a solution, and it can

encourage the student to discover diverse solution paths," While the

prover was limited, the heuristics it supplied were more natural than

those that might be supplied by more powerful, resolution-based

theorem-provers. A version of this program without a theorem-prover

has been used successfully as a primary source of instruction in an

introductory symbolic logic course at Stanford for the past three

years,

A CAl course described in Kimball (1973) uses symbolic

integration routines and an algebl;"aic expression simplifier to assist

students in learning introductory integration techniqueso The program

stresses development of student heuristics by perform:!-ng most of the

tedious computations (substitutions, integration by pal;"ts, etco) for

the student after he has cOmPletely specified the parameters. An

attempt is made to estimate each student's knowledge of integr~tion

methods individu~lly, in order to select problems dynamically.

5

The BIP,Course----

The goal of a,tutorial'CAI program is to provide assistance as

the ,student attempts to solve a problem. The program must contain,a

representation oftne subjf;!ctmatter thll-tis complex enough to allow

the program to generate appropriate assistance, at any stage of the

student's solution attempt • Both the logic and the ca:J.culus courses

approach this goal. HoweveJ;", coniputerprogramniitig is an activity

fraught with human varill-bility, and, how an individual calls on his

programming skills to write a program is not' so clear, as, for el{ample,

how he uses logic in achieving a proof. Furthermore, the difficulty

of describing and verifying program sf;!gments precludes the kinds of

solution analysis perfortned by,the logic and calc1,!lus courses. BIP

contains a reprf;!sentation of information appropriate to the teaching

of computer prograniIliing that ll-llows'thf;!program to provide help to the

student and to peJ;"forll1 a'limited, 'but' adequate analysis' of the

correctness of his progr$1l asa solution to the givenprobleni. Asa

vehicle for research ininstru'ctional strategies, BIPwill serve as

both a teaching and a learning tool.

To the student seated ath1:stertninal, BIPlooks very much like a

typical timeshaJ;ing BASIC opera.ting system. The BASIC interpreter,

written especially for BIP; a.nalyzes each program line after the

student types it and notifies the student of syntax errors. When the

student, runs his 'program, it is checked for structural illegalities,

6

and then, during runtime, e~ecutionerrors are indicated. A file

storage system, a calculator, and utility commands, like TIME, are

available.

Residing above the simulated operating system is the "tutor," or

instructional program. It overlooks the entire student/BIP dialogue

and motivates the instructional~interaction. In addition to selecting

and presenting programming tasks to the student, the instructional

program identifies the student's problem areas, suggests simpler

subtasks, gives hints or model solutions when necessary, offers

interactive lessons, or, -most ·often, -manual references D

debugging

staff, and

aids and a facility for communicating with

supplies incidental~instruction in the form

the Stanford

of messages,

Each student

receives a BIP manual that introduces him to programming, the BIP

system, and the synta~ of BIP'sversion of BASIC. The manual serves

as the student's primary source of information throughout the course.

At BIP's core is an information network that embodies the

interrelations of the concepts, skills, problems, subproblems, pre

requisites, BASIC commands, remedial lessons, hints, and manual

references. We believe that with a sufficient student history, the

network can be successfully applied to a student learning model to

present an individualized problem sequence, to control the frequency

and type of assistance given during programming, and to identify

problem areas. Our e~perimentalwork·will compare different student

models and decision algorithms, including a "free" or "student-choice"

7

mode.where the student is given enough information for him to select

his own problemso

Figure 1 illustrates sc4ematicallythe interactions of the parts

of the BIP program. Each of these is discussed .in,detailbelowo

8

81 P: Information Flow Diagram

CURRICULUM
DRIVER

SOLUTION
ANALYZER

PROBLEM
SELECTOR

INSTRUCTIONAL
PROGRAM

BASICINTE RPR ETER

SYNTAX AND EXECUTION
ERROR DETECTION

PROGRAM ANALYZER

LOGICAL
ERROR DETECTION

BASIC
MANUAL

HELP
ROUTINES

STUDENT
HISTORIES

INFORMATION 'NETWORK

PROBLEMS
MODEL

SOLUTIONS

r---------~---------------------i--------+-------------,,----~~----"------i----~---'-<------"-------1

I
I
I

I
I

I
I

DATABASE I
L---------i---------~---------_~ ~ ~ ~~ J

\D

Figure 1

The BASIC Interpreter, Error Detection, Asitance, Debugging Aids

BIP's interpreter was specially designed to allow the

instructional program full access to the student's programs and his

errors, It handles a cOJllplete·subset of BASIC, During a student's

work on a task, each of the ·BASIC operators can be temporarily

deactivated as required for pedagogical purposes. For example, during

a simple task whose instructIons require the use of a FOR •• ;NEXT loop

and in which no other branching is ·necessary,IF statements will not

be accepted. The student is reminded that he is to use FOR ••• NEXT to

form. his loop.

Immediately after the student enters a line, syntax analysis is

performed. (Any student entry beginning with a number is assumed to

be a line of BASIC code.) If a syntax error is discovered, an error

message ("illegal print list," "missing argument for INT") is sent to

the student, the error nOJllber is retained by the instructional program

for reference if the student requests more help, and the line is

rejected·

If he does not understand the syntax·mistake immediately, the

student can request one of three typeS of assistance by beginning his

next line with.a question mark:

? An explanatory message stored for·this syntax error is

printed. Repeated requests summon different.messages

until they are exhausted.

10

?REF A manual reference covering the particular syntax

involved in the error is printed for the student.

?LES An interactive lesson, relevant to the syntax error,

is presented. The lesson provides drill-and-practice

instruction on the student's syntactic difficulty.

Once the student has entered a syntactically legal program, he

can have it executed in one of 'three formats, Two of which involve

debugging aids. After his request, and before the actual execution,

the student's program is checked for illegaL program structure (e.g.,

a missing END statement, or illegally nested loops) by a routine we

call ERR DOKTOR. If all is well,one of the three modes of program

execution is initiated:

RUN The student's program is executed, as in standard

BASIC implementations, in the order of its line

numbers.

TRACE (A debugging option) The student controls execution of

the program using the standard interactive debugging

technique of stepping through it one line at a time.

As a line is executed; its 'number is printed. This

allows direct observation of the,~xecution sequence of

such structures as loops and conditional branches.

11

When an assignment statement, which initializes or

changes the value of a variable, is executed, the

variable and its new value are printed with the line

number. The student can easily see the "internal"

activity of the program, which would otherwise be

visible to him only by means of extra statements

printing interim results.

numbers,By specifying inclusive line

student can TRACE a selected' section of

This is useful when he is satisfied with

the

his program.

other parts

of the program and wishes to avoid the time-consuming

process of tracing.thoseparts.

When CRT display units are used as the student

terminals in place of teletypes, the format is

slightly different. The program listing appears on

one half of the screen, with the currently executed

line blinking. The variables and their values will

FLOW

appear on the other half of the screen as assignment

statements are executed.

(The second debugging aid) This option is available on

CRT display terminals'. FLOW differs from TRACE in

that a flowchart representation of the program appears

in place of the program listing. As the student steps

12

through the execution, the element of the flowchart

representing the current "line blinks. Variables and

their values appear in the other half~screen, The

FLOW option involves the interface of a flowchart

generating routing

tracing procedure.

(under development) with the

There are four ways in wpiCh"anymode of execution can terminate.

Normal termination follows executionofa BASIC END or STOP statement,

The student is told that "executi.onterminated at line xxx 0 II

Alternatively, the student can" "abort execution by typing a control

key; BIP responds with the message "execution aborted at line xxx."

The third cause of termination "is excessively long running, which is

at present determined on tpebasis"of the count of the number of lines

executed. A message indicating BIP's suspicion of an infinite loop is

printed.

Finally, runtime errors "terminate execution. If an unassigned

variable, illegal GOTO, or other error is discovered, an appropriate

error message is printed, the error number is stored by the IP, and

execution terminates. The student may "then " request the same three

types of assistance for execution errors discussed under syntax errors

above.

13

Goals of the Curriculum

Prior experience with CAl in programming at the college level has

convinced us that many students who 'wish to learn the fundamental

principles and techniques of programming have limited mathematical

backgrounds. More important, their confidence in their own abilities

to confront problems involving numeric manipulation is low. The scope

of the BlP curriculum, therefore, 'is r?stricted to teaching the most,

fundamental of progra~ing skills and does not extend to material

requiring mathematical sophistication.

The curriculum is, designed to give the student practice and

instruction in developing interactive programs in order to expose him

to, uses of the computer 'with'which"he may well be' unfamiliar.BlP

guides the student in construction of 'programs that he can '''show off."

The emphasis is on programs that are 'engaging and entertaining, and

that can be used by other people. 'As the student writes his programs,

he keeps in mind a hypothetical user, a personwho will use the

student's program for his,own purposes'andtow'hom theperf~rmance of

the program must be intelligible; The 'additional demands for clarity

and organization forced by 'interactive programming, as well as the

increased noticeability of 'bugs are valuable, as are the added

motivational effects.

Numerous texts were examined as possible sources for the

necessary programming principles to be developed in an introductory

14

course and for the problems that illustrate those prinsiples. We

incorporated ideas from general computer science textbooks (Forsythe,

Keenan, Organick, & sternberg, 1969), from the excellent notes for an

introductory programming course that were oriented toward the ALGOL

language but whose examples were easily generalized (Floyd, 1971), and

from books and notes dealing specifically with BASIC (Albrecht,

Finkel, & Brown, 1973; Coan, 1970; Kemeny & Kurtz,1971; Nolan, 1969;

Wiener, 1972; various .publications of the People's Computer Company).

In addition, problem sets from Stanford University's introductory

somputer sciencecourseswere'collectedcand examined.

In general,the curriculum provides useful, entertaining, and

practical computer experience for students who are notnece$sarily

mathematically oriented. It gives them the opportunity to develop

programming skills while working on problems that are challenging but

not intimidating, in which the difficulties stem from the demands of

logical program organization rather than from the complexities of the

prerequisite mathematics. The curriculum text is listed in Appendix

The Curriculum Driver

The curriculum is organized as a set of discrete programming

problems called tasks, whose text includes only the description of the

problem, not lengthy descriptions of programming structures or

15

explanations of syntax. There is no default ordering of the tasks;

they are not numbered. The 'decisions involving a move from one task

to another can be made only on the basis of 'the information about the

tasks (skills involved, prerequisites required, subtasks available)

stored in BIP's informationnetwork~

A student progresses through 'the curriculum by writing and

running a program that solves,the'problem-presented on-histerminal.

Virtually no limitations-are imposed-on the amount 'of 'time' he spends,

the number of lines he writes in his-program, the number of' errors he

is allowed to make. the number-Of- times he chooses to execute the

program, or the changes he makes -within it. The task-he is performing

is stored on a stacklike structure, so that he may work on another

task and return to the 'previous task-automatically. All BIP commands

(listed in Appendix B) are available 'to the student at all times. The

following commands deal specifically with the curriculum driver:

EINT When a student experiences difficulty with a task,

several levels of help are available. HINT retrieves

problem-specific hints from a set stored in the

network.

SUB If, after pondering

attack has still not

the available-hints,a method of

occurred -to-the student, he can

have the task broken into

16

conceptually simpler

subtasks. These are presented one at a time as tasks,

while the main task is pushed onto the stack

structure. When the student completes a subtask, BIP

returns him automatically and explicitly to the larger

problem.

ENOUGH If he understands the demands of the larger program

during his work on the subtask; he can type ENOUGH and

return to the larger task from which he started.

Outside of a subtask, typing ENOUGH terminates work on

the current task without giving the student credit for

having completed it.

MODEL After exhausting all hints and sub tasks available for

a given task, the student can request that BIP suggest

a model solution. The model stored for each task is

intended to be easily understood, and correct, but it

is not necessarily the shortest or most elegant

solution.

RESET

MORE

Typing RESET clears the task stack of all the tasks on

which he has been working, so the student can start

fresh if he wants.

,When he feels that he has solved the problem, the

student types MORE and BIP takes over, as described in

the "Solution Analysis" Section.

17

The curriculum structure 'allows fen a wide variety of student

aptitudes and skills. Most, 'of the 'curriculum-relilted options are

designed with the less competent',lessClonfident student 'in mind. A

more independent student 'may"si11lply' 'ignore the 'options. ThusBIP

gives all students the opportunity--to'determinetheir ownindividual

challenge levels si~ply by making assistance available, but ,not

inevitable.

BIP offers the student considerable flexibility in making task

related decisions. As explai'led' above,hemayas,k for 'hints and

subtasks to get started in solving the ~iven problem, or he may ponder

the problem on his own,using only the manual for additional

information. He may request a different task by name, in the event

that he wishes to work on it immedi1;ttely; either completing the new

task or not, as he chooses. On his return; BIP tells him the name of

the again current task and allows 'him to have its text printed to

remind him of the problem he is,to'solve. The student may request the

model solution for any taskat'any time, but BIP will not print the

model for the current task; Unless he has exhausted the available

hints and subtasks. Taken together, the curriculum'options allow'for

a range of student preferencesanq behaviors, this flexibility will be

put to use in the experiments referred to earlier, comparing student

selected and BIP~determined curricul~'decisions.

18

Solution Analysis

At present a student is not considered to have completed a

problem if he has· not executed his ·current program successfully. BlP

"knows" at all times (a) whether an executable, syntactically legal

program exists, (b) whether the student has executed that program, (c)

whether execution errors have occurred, and (d) whether the student

has made changes or additions since the last execution. The student's

history will be updated to indicate successful completion of a task

only if he has succeeded in an error-free execution of the most recent

version of his p~ogram.

Error-free execution of a program is no gUarantee that the

program correctly solves the problem presented. Program analysis is

an embryonic art, and BlP is not capable of "understanding" a

student's programs in the fullest sense implied by current research in

artificial· intelligence, We are, however, investigating two promising

potential additions to BlP that are expected to provide sufficient

solution analysis for pedagogical purposes, without involving a full

scale application of program verification techniques. The results of

the two analysis efforts should allow BlP to give the student an

indication of (a) the kinds of test values that his program fails to

handle properly, and (b) the kinds of programming structures that his

program should have but doesen't.

The first analysis scheme we will apply is simulated execution of

.19

the student's program on test data, comparing its output with that oJ

one or more model solutions. A preliminary dialogue will establish

the variable names that the student has used for critical input/output

variables. Clearly this method will often fail to indicate all of the

student's logical errors, but we are hopeful that in cases where known

problems call for fairly simple solutions, an analysis will succeed in

discovering particular kinds of problem-specific errors. The second

method involves comparison of program' flow diagrams, again matching

the student's effort against amodel solution. BIP generates this

internal representation of the student's program to both check for

legal program structure and draw flowcharts 'as apedagogicalfdebugging

tool, and we are investigating'methods by which the schemas of

different programs can be compared.

BIP's Information Network

Task selection, remedial assistance, and problem area

determination, BIP's "tutorial" activities, require that the program

have a flexible information store interrelating the tasks, hints,

manual references, etc. This store has been built using the

associative language LEAP (Feldman, 1972). The network is constructed

using an ordered-triple data structure and is best described in terms

of the various types of nodes:

20

TASKS All curriculum elements exist as task nodes in the

network. They can be linked to each other as

subtasks , prerequisite tasks, or "must follow" tasks.

SKILLS The skill nodes are ,intermediaries between the concept

nodes and the task nodes ("ee Fig. 2). Skills are

very specific, ,e.g. "concatenating string variables"

or "incrementing a countervariable." By evaluating

success on the individual skills, the program

estimates competence levels in the concept areas. In

the network, skills are related to the tasks that

require them and to the concepts that embody them.

CONCEPTS

The concept areas covered' by.BIP are, for the time

being, the folloWing:

Interactive programs
Variables and literals (numeric and string)
Expressions (algebraic, string, and Boolean)
Input and output
Program control~branching

Repetition - loops
Debugging
Subroutines
Arrays (one dimensional)

The specific implementation of concept nodes in the

network is not completely determined, but the links

will be to the skills and only through them to the

tasks.

21

BASIC OPERATORS

Each BASIC operation (PRINT, LET, •••) is a node in

the network. The operations are linked to the tasks

in two ways: first·as elements that must be used in

the solution of the problem; and second as those that

must not be used in the solution. (These are

temporarily disabled in the interpreter.)

HINTS The hint nodes are linkeq to the tasks they may be

helpful in. Each timea·new·skill, concept, orBASIC

operator is introduced, there is an extra hint that

gives a suitable manual reference.

ERRORS All discoverable syntax, structural, and execution

errors exist as nodes in the network, and are linked

to the relevant help messages, manual references·and

remedial lessons.

22

A Segment of SIP's Information Network

WRITE A PROGRAM THAT:
PRINTS THE NAME OF A
VARIABLE AND ITS VALUE

PROBLEMS

I\l
VJ

WRITE A PROGRAM THAT:
PRINTS THE WORD "CAT"

SKILLS

PRINTING LITERALS

CONCEPTS

OUTPUT

Figure 2

WRITE A PROGRAM THAT:
PRINTS THE VALUE OF
A VARIABLE

ASSIGNING LITERALS

Upon completion of a task, the student is given a posttask

interview in which BIP presents the model solution stored for that

problem. (The student is encouraged to regard the model as only one

of many possible solutions.) BIP'asks the student whether he has

solved the problem, then asks,for each of the skills associated with

the task, whether he needs more practice involving that skill. The

responses are stored and used in future BIP-generated curriculum

decisions. BIP then informs the student that he has completedtlte

task, and either allows him to select his next task by name (froman

off-line printed list of names and problem texts), or selects it for

him.

An example of the role of the Information Network in BIP's

tutorial capabilities is the' BIP-generated curriculum decisions

mentioned above. By storing' ,the student's 'evaluation 'of his own

skills, and by comparing his solution'attempts to the stored moders,

BIP can be said to "learn" about 'each student as a individual who has

attained a certain level of competence in the skills associated with

each task. BIP can then search the 'network to locate the skills that

are appropriate to each student's different abilities and to present

task that incorporate those skills. The network provides the base

from which BIP can generate decisions that take into account both the

subject matter and the student, behaving somewhat like a human tutor

in presenting material that either corrects specific weaknesses or

challenges and extends particular strengths, proceeding into as yet

unencounteredareas.

24

The EIP Manual

It is tedious and probably ineffective to present voluminous

description, explanation, and examples from the computer directly on

the terminal. We have chosen instead to present this material to the

student in a printed manual of approximately 50 pages, The manual

includes complete instructions on the operation of the course (signing

on, dealing with the terminal, dealing with EIP) , a general

introduction to computers (their capabilities and the concepts

involved in programming languages), and the syntax of EIP's BASIC,

complete with examples and suggestions for the appropriate uses of

each of the BASIC statements,

All programming terms used in the manual and in the tasks are

defined briefly in the glossary at the end of the manual. References

to the relevant sections of the manual are included in each glossary

entry. All words that have precise programming meanings different

from their normal English meanings are listed.

We believe that when the student encounters another programming

language with which he is not famitiar his primary resource will be

the manual for that language. He is not likely to have an instructor

or a CAl course at hand, and the principal means by which he will

learn the new language' ~>Jil1 be through his own,experimentati.on, guided

by the explanations and examples in the manual. Experience with BIP

(with its frequent cross-references to the manual) will, we hope, give

25

the student a degree of confidence and ease in finding his way in

other situations, when the manual may be his only guide.

Miscellaneous Options Available !£. the Student

Several additional features are available to BIP students:

CAlC All BASIC expressions (numeric, string, and Boolean)

can be evaluated by ,this BlP command. This, is not

only a convenience, freeing' the student from having to

write and run a complete program to make a simple

calculation, but it is also useful as a'debugging aid.

FILE SYSTEM: FILES, SAVE, GET, MERGE, KILL

BIP allows each student to save permanently as many as

four programs, with 'names he designates. ' This gives

him the opportunity to work on an extended programming

project andsimultaneously"to accumulate his work from

each session at the terminal. He can obtain a listing

of his file names, with 'their 'most 'recent write dates,

and his savedprogra~s are always immediately

retrievable for modifications or 'additions.

26

FIX This feature allows, the student to, send a message to

the programmers at Stanford. It gives him a chance to

communicate difficulties and confusions and helps both

to improve BIP's interaction abilities and to identify

and locate errors in the program. The convenience of

typing a message or complaintwhile seated at the

terminal encourages students to provide us with

immediate and valuable feedback.

LOG-IN MESSAGE

Although not strictly a student option, this feature

prints a stored message to each student as he signs on

to the course. The message is updated frequently and

gives information about revisions to the course,

responses to messages left by students, and notices of

meetings with Stanford personnel at which students may

discuss questions too complex to handle in short

written messages.

We are in continuous communication with students who are using

the course and whose suggestions' regarding more flexible, intelligible'

interaction with BIP have generaged several improvements. Past

experience has shown that'superficial problems in dealing with an

instructional program can become significant barriers to acquiring the

27

concepts and skills presented by the program, and we continue to make

additions to BIP to eliminate frustrating confrontations between the

student and the uncomprehending machine.

28

APPENDIX A

THE BIPCURRICULUM----

The following is the text for all tasks, hints, and subtasks in

the pilot-year curriculum. Some explanatory remarks are in order.

(1) The tasks appear iU,the order in whichBIP would present them

if it had no access to the student history. This order is modified in

two ways: either by the student's choice of a particular task, or by

BIP's decision based on thestu4ent's previous work.

(2) A MORT is a continuation of the original problem, calling for

a modification or extension of the progra)ll just completed. Within

this listing, the text of each task is followed by the hints and sub-

tasks associated with it; the MORTs of the task are printed next,

followed by their own hints and subtasks.

(3) Because some tasks require similar skills, and strategies,

some hints and subtasks are associated with more than one main task,

and thus they appear more than once in this listing.

(4) References to Section XXX refer to the BIP manual supplied to

each student.

(5) Terms enclosed in asterisks '(e.g., *print*) call attention

to the special use of that term. All such terms are listed and

explained in the glossary of·the manual.

29

TASK PR1:----
Before you start the f1rst problem, be sure to read
about the BIP course in the BIP manual.

Then read about the structure of BASIC programs.

Type "MORE" when you're ready.

MORT:
Now write a *program* to *pr1nt* the *number* 6 on your
teletype. Then *run* the *program*.

TASK OP1:----
SCRATCH your old program.. Then write and *run* a
program that *prints* the *sum* of 6 and' 4.

MORT:
Now modify the program to do each of the following:
print the *difference*
print the *product*
print the *quotient*

HINT:
'Sum' means addition
'Difference' means subtraction
'Product' means multiplicat10n
'Quotient' means division

TASK VN1:----
SCRATCH your old program. then write a program that:
1. *Assigns* the *value* 6 to a *numeric variable* N.
2. *Prints* the value of this variable.

TASK VX1:----
Write a program that:
1. Assigns the value 6 to N.
2. Prints the sum of Nand 4.

30

TASK VX2:

Write a program that:
1. Assigns the value 6 to M.
2. Assigns the value 4 to N.
3. Prints the sum, difference, product and quotient of M
and N.

HINT:
'Sum' means addition
'Difference' means subtraction
'Product' means multiplication
'Quotient' means division

TASK IN1:

Write a program that:
1. Allows the user to *input* a value to M and a value to N.
2. Prints their sum, difference, product and quotient.

TASK IN2:

Write a program that:
1. Allows the user to choose the arithmetic operation he
wants the program to perform. He should type 1 to add,
2 to subtract, 3 to multiply, or 4 to divide. Use the
variable X for this code 'number.
2. Allows him then to input the values for M and N.
3. Prints out the result of the operation he asked for
when he gave a value to X. For example, if he typed
4, you should print the quotient of the numbers he gave
for M and N.

SAVE this program when you get it to work.
help you later.

It will

HINT:
Read about **IF •• THEN** statements in Section 111.11.

HINT:
Depending on the value of X, the program should do one
of four things. Get X first, then get M and N. then use
X to decide which **PRINT** statement to *branch* to.

31

SUB:
You need a program that can make decisions, then you can
incorporate the arithmetic operations into it.
Translate the following into BASIC (it is definitely not
BASIC now), and run it:

1. let the user type a number between 1 and 4•
2. if the number is 1, jump to 7
3. if the number is 2, jump to 9
4. if the number is 3, jump to 11
5. the number must be 4,so print "YOU TYPED A 4!"
6. jump to the end of the program
7. the number is 1, so print "YOU TYPED A 1'"
8. jump to the end
9. print "YOU TYPED A 2!"

10. jump to the end
11. print "YOU TYPED A 3!"
12. the end
Once this program works, type "MORE" and return to the
main task.

MORT:
Now fix up the program so that it prints out questions
and little messages that tell the user:
a) What to do (e.g. "TYPE 1 FOR ADDITION", ...).
b) What the result represents (e.g. "THE SUM IS ... ").

HINT:
Type MODEL IN2 and
necessary additions

copy what you need, then make the
to it.

MORT:
Modify the program once again so that it keeps *looping*
back to the beginning until the user inputs a 0 for the
operation code.

HINT:
Type MODEL IN2 and
necessary additions

copy what you need, then make the
to it.

HINT:
You need two more statements:
an **IF • • THEN** after the "INPUT X" that jumps to the
end if X is zero,
a **GOTO** back to the line with the instructions.

32

TASK ST1:

Please read
Write (and
"SCHOOL".

TASK VS1:----

about *strings* before you get confused.
run) a program that prints the string

Assign the value "HORSE" to the*string variable* X$ and
print the value of X$.

the value of
value. (Your
types, whether

Allow the user to **INPUT**
variable X$. then print that
just "echo" what the user
number or a word.)

the string
program will

he types a

MORT:
Read about *concatenation*ofstrings.
Concatenate the word "OKAY" (or any word you like) to
the user's input. Print the result.

TASK SX2:

Assign the string "DOG" to X$ and the string "HOUSE" to
Y$. Print the *concatenation* of X$ and Y$.

HINT:
Concatenation is in Section III. 6. Type the & character
with The shift key and the 6 key.

MORT:
(Keep the same string values of X$ and Y$.)
Assign the *concatenation*of Y$ and X$ to the variable.
Z$. Print the value of Z$.

MORT:
(Still with the same 'values of X$ and Y$.)
"HOUSEDOG" should have. a space between the words.
Concatenate a. space between Y$ and X$ and print the
result.

33

HINT:
The literal "A" prints the letter A
What character between quotes will print as a space?

TASK SX3:----
Allow the user to input the
Concatenate the strings with a
print the result.

TASK SX4:----

values of X$
space between

and Y$.
them and

Let the user make up a sentence.
1. Ask him how many words he wants to have in the
sentence.
2-. Let him i.nput those words, one at a time-.
3. After each input, concatenate a space and his latest
word into a string variable. Use X$ for the input word,
and use S$ to hold all the concatenations.
4. After you have looped around the specified number bf
times, print his sentence.

HINT:
make S$ equal to the string version of nothing, like
this: S$ = .m outside the loop.
Inside the loop, use S$ to accumulate the sentence: S$ =
S$ & " " & X$

34

TASK INT1:

Rewrite your calculator so that the user can type
"+" for addition
1t_11 for subtraction
""',, for multiplication
"1" for division
to tell the calculator which operation to perform. You
may have "'SAVED'" your calculator program; if so, use
GET
to retrieve it.

HINT:
Type MODEL IN2 and
necessary additions

copy what you
to it.

need, then make the

SUB:
You need a program that can make decisions about
strings, then you can incorporate the arithmetic
operations into it. Write a program that asks the user
to type any character. If he typed a ! mark, the
program should say "YOU TYPED A ! " If he typed
sOlllething else, it shoul.d say "YOU DID NOT TYPE A !"

TASK XMAS:

On the first day of Christmas, someone's true love sent
himlher a partridge in a pear tree (one gift). On the
second day, the true love sent two turtle doves in
addition to another partridge (three gifts on the second
day). This continued through the 12th day, when the
true love sent 12. lords, 11 ladies; 10 drummers,
all the way to yet anoth~r partridge. Write a program
that computes and prints the total number of gifts sent
on that 12th day.

HINT:
This program requires a loop. Each execution of the
loop involves accumulating the value of the index into a
total.

HINT:
Finding a total or sum almost always means two things:
1. Setting a variable equal to zero outside a loop.
2. Accumulating into that variable within the loop.
In words, total equals total plus another value.

35

SUB:
A very important sub task:
Write a program with a little loop. The "work" of the
loop is just to print the value of the loop's index.
When you run the program, it should look like it is
counting from 1 to the top value. Use whatever top
value you like.

MORT:
Modify your program so that it prints the total gifts
for each day. (Day 1 = 1 gift, Day 2 = 3 gifts, Day 3 =
6 gifts, etc.)

HINT:
You need one statement that prints the value of the
index (the numb~r of days) and the accumulated total of
gifts.

MORT:
The user of your program has a true love who will send
presents in the same way for as many days as the user
wants. Let your user say how many days, and calculate
the number of gifts sent on that day. (The generous
true love may send presents for more than 12 days; if
the user likes.)

SUB:
Very. important::
Write a loop that prints the value of its index. Start·
the loop at 1; but let the user give the top value. You
can add to this program,making the loop do some. real
work, and the work will then be done as many times as
the user iikeso

TASK PAY:------
A man is paid 1 cent the first day he works, 2 cents the
second day, 4 cents the third, 8 cents the fourth, etc.
(doubling his wage each new day). Calculate his wage
for the 30th day.

HINT:
Say w is the variable for the wage. On the first day, W
equals 1. For every day. after that, W equals W* 2.

36

MORT:
Modify the program to calculate the total wages for the
the month: sum of the first day plus the second day

plus the 30th day.

HINT:
You have a variable for each day's wage,
another variable to accumulate the total.

You need

HINT:
Finding a total or sum almost always means two things:
1. Setting a variable equal to zero outside a loop.
2. Accumulating into that variable within the loop.
In words, total equals total plus another. value.

MORT:
Your program's user has a contract with this man, for
the same schedule of wages. Tell the user how much he
will owe the man for any numb~r of days he (the us~r)

specifies.

SUB:
Very important:
Write a loop that prints the value of its index. Start
the loop at 1, but let the user give the toP value. You
can add to th~s program, making the loop do some real
work, and the work,will then be done as many times as
the user likes.

TASKIT1 :----
Write a program that counts (and prints) the number of
,odd numbers between 5 and 187 inclusive. For example,
there are 3 odd'numbers between,S and 9 inclusive: they
are 5, 7, and 9.· And a program that counted those
numbers would print something like this:

THERE ARE 3 ODD NUMBERS BETWEEN 5 AND 9

Do not print each odd number as you count it.

HINT:
Any odd number plus 2 equals the next odd.number.

37

HINT:
You know the bottom and top values of the loop, but the
point of the program is to see how many times' the loop
must be executed before it gets to the top, Use a
counter inside the loop and add to it with each
execution,

MORT:
Now find the sum of all those odd numbers you just
counted,

HINT:
Finding a total or sum almost always means two ,things:
1, Setting a variable equal to zero outside a loop,
2, Accumulating into that variable within the loop,
In words, total equals total plus another value,

MORT:
Let the user specify a range, and tell.him 1) howmany
odd numbers are in that range, and 2) the sum of those
numbers. For example, you ask him for the lower limit
(suppose he gives 9) , Then you ask him for the upper
limit {suppose he gives 17), The number of odd numbers
ip. that range is 5 (9, 11, 'B,15,17), and the sum is
65.

HINT:
The top and bottom Values for
user, Thework of the loop is
times it is executed,

TASK IT2:----

the loop come
just to count

from the
how many

Find the number of integers greater than 99
than 278 that are divisible by 11. You don't
division to do this,

and less
need any

HINT:
You know the bottom and top values of the loop, but the
point of the program is to see how many times the loop
must be executed before it gets to the top, Use'a
counter inside the loop and add to it .with each
execution,

38

MORT:
Now find the sum of the numbers greater than 99 and less
than 278 that are. divisible by 1) •

HINT:
Finding a total or sum.almc;lstal':{ays me~nstwo things:
1. Setting Ii variable'eqtlal. to'..zero' otlt$idea.loop.
2.· Accumtllating into. that variable within the lc;lOP.
In word$, total eqtlals,total pltls another valtle.

TASK AV:----
Find the average of 10 numb.ers. Ask the user to give
the numbers, one at a time.

HINT:
Finding a total or sum almost always means two things:
1. Setting avariabllil equal to zerooutside~ loop.
2. Accumulating into that variable within the loop.
In words, .total equals total. plus another value.

HINT:
The average of .10 numbers is their sum divided. by 10.

SUB:
A very important sub task:
Write a program with a little loop. The, "work" of the
loop.is just to print the valtle c;lf the loop's index.
When you. run the prc;lgram, it should look like it.is
counting from 1 tc;lthetop value. Use whatever top
value you like.

MORT:
Modify
numbers
numbers

the program to let the user specify hc;lw many
he wants to average. Let him type that many
one at a time, thentlilll him the average,

HINT:
The average of N numbers is their sum divided by N.

SUB:
Very important:
Write a loop that prints the value of its index. Start
'the loop ,at 1, but let the user give the t\,>p value. You
can add to this program, 'making the loop do some real
work; and the work will then be done as many times as
the user likes.

39

TASK GAS:
--.~

Write a program to calculate the user's gasmileage-; He
recorded his car's mileage at the beginning of the trip,
and again at the end of the trip, when he boughtso1Jle
amount of gas. Ask him' for the starting and ;ending
m,ilea'ges(arid: 'calculate- the miles driven) ,. then ask for
thenuniber of gallons of- gas he bought. Then >tell him
ltisgas mileage (miles' per<gallon).:

Example: starting mileage-= 5325
ending mileage = 5550
(miles driven = 5550 - 5325 = 225)

'gallons of' gas =9
gas mileage = 225 miles /9 gallons P 25mpg.

MORT:
Each time -the user buys gas ,'he recOl;ds, tlte ,mileage and
tl1e'gallons:bought. Mod:tfyyourprogram,to,ask him how
many ti1Jleshebought gas;then:ask for the mileage and
gallons he recorded each time. Accumulate the total
miles traveled and the total gallons, then print those
'totals'and the" gas' mileage.' Test the, program with some
very simple numbers to be sure that it calculates
correctly.

HINT:
You only need the starting mileage ' Dnce, ,Total ,miles
equals the last mileage recorded minus starting ,mileage.
Keep a ruI1ning total of gallons bought. -

~ ""GU",E""S:::;S-=-:

Write a program that plays a guessing game. Generate a
random integer between 1 and 25 (read'themanual,first),
then' let the user guess what the number is. Print
appropriate messages if his guess is too high or too
low, and give him another chance to guess. Congratulate
ltim for guessing correctly.

HINT:
Break this problem into parts. You need a loop whose
"work" is to get and compare: the user's guess. ,:Generate
the- random number befor'e 'the loop, and, print the

'cor:rect;..guess message, after the loop.

'40

SUB:
Forget about random numbers for now. Write a program
that gets a number from the user and compares his number
to 100. Print "HIGHER THAN 100!" or "LOWER THAN 100!"
or "100 EXACTLY!" appropriately. Then you can put this
part together with the other parts you need in -the main
task.

SUB:
Your program must get a number from the user again and
again, until the input number equals some set value (the
random number); For now,write a program-that asks for
a number and checks to see if that number equals 100.
If it is 100, the program should stop; if not, it should
ask for another input. Then you can fit this part into
the main task.

MORT:
Add a feature to your program- that tells the user how
~any guesses he needed. Three lines will do it: one to
assign the value 0 to-a counter variable, one to -add to
the counter each time he guesses, and one to print the
value of the counter: with some appropriate message.

MORT:
Add another feature that lets the user start the game
again with a new random integer. Print an instruction
like "TYPE; 'YES'IF YOU WANT TO _PLAY AGAIN." If he types
'YES' then start the game over; Otherwise, let the
program stop.

TASK TWOS:

Write a programusirig a **FOR. • NE~T** loop
by twos, up to a num,ber typed by the user.If
8, your program should print
2
4
6
8

TASK BACK:

Use a **FOR • • NEXT** loop to count bac1<wards
to 0, _by twos. You will need a STEP -2
'FOR' -statement.

41

to count
he types

from 20
in your

TASK NGREAT:

Ask the user to type two nUIllbe):'s, thep. cOIllpare. theIll... If
the user types 4 and 12.5, for eXaIIlple, yourprograIll
should print

12.5 IS GREATER THAN 4

TASK ALPH:

COIllpare two strings typed by the user. A s~rip.g is
"less than" another string ifit.cOIlles before the other
string alphabetically: "APPLE" < "FISH" is
true. Your prograIll should printsoIllething. like

APPLE COMES BEFORE FISH

TASK LLOOP:

Use a loop to get three.nUIllbers f):'oIll.theuser, and print
the largest of those·nuIllbers. Do. not use three
variables for the nUIllbers. Hint.:i'et a varia,ble L (for
largest) equal to O. Then cOIllpare each user nUIllber with
L. Change the value of L to a larger nUIIlber if one is
typed.

HINT:
Seta variable L>(forlargest)equal
cOIllpareeachusernUIllber with L. Change
to a larger nUIllber if one. is typed.

TASK SLIST:

to zero.
the value

Then
of L

Let the user input a *list*of 4 strings (a *subscripted
variable*with 4 "slots" in it) -- for ex;l1Ilple, the
naIlles of the courses he is taking. Print out·. the list
after it is all typed in. uSe a **FOR • • NEXT** loop
in this prograIll.

HINT:
There are two parts to this:
Looping to input a string list, and looping to print it
out"

42

to use
Write a
work of

to the

The key is
the list.
to 4. The

the index

SUB:
Think about a number list for now.
the index of the loop as the index of
loop whose index starts at 1 and goes
the loop is to assign the value of
corresponding element of the list:

L(I) = I
The only way to test your program is to use another
loop, indexed from 1 to 4, whose work is to print the
list, one element at a time:

PRINT L(I)
The first execution of the loop should print the first
element of the list, etc. When you finish this sub
task, return to the main task. Change the list variable
to a string list variable, and change the work of the
first loop so that each execution asks the user to input
a string.

TASK BACKLST:

Take a list of strings from the user, then print the
list in the opposite order. The list may be of any
length up to 25 (ask how long the user wants it to be,
then set up a loop whose top value is that number.) You
will need a **FOR • • NEXT** loop with a STEP -1 to
print the list backwards.

SUB:
Very important:
Write a loop that prints the value of its index. Start
the loop at 1, but let the user give the top value. You
can add to this program, making the loop do some real
work, and the work will then be done as many times as
the user likes.

TASK OTHER:

Take a list of numbers from the user, of any length he
likes up to 15. After he types the numbers, print out
every other number in his list. (If he types these 6
numbers: 2 8 12 5 3 9 your program should print the 2,
12, and 3.)

HINT:
Use a **FOR • • NEXT** loop with STEP 2. Then use the
index of the loop as the index of the list to get every
other element in the list.

43

APPENDIX B

THEBIP COMMANDS----

This is analphabeUc listing of the BIP commands and their

functions. ~ny (e.g., RUN, LIST ,SAVE) are :tdehtical in function to

their standard BASIC counterparts. The others serve specifically

instructional purposes, in that they deal with BIP's curriculum

structure, file system, or student history.

CALC Evaluates an expression.
allows the student to see
quick calculations without
running a complete program.

This feature
the resultof

writing and

CURRIC

ENOUGH

FILES

FIX

Writes the text of the curriculum to a disk
file. This is available to Stanford
programmers and designated course
instructors· only. CURRIC provides a
readable version of the curriculum-related
parts of tile netw<;>rk,with the text of the
tasks listed along with the associated hints
and subtasks. This listing appears as
AppendixB.

Terminates the current task without giving
the student credit for having completed it.

Lists the names of the files in per1J!,anent
storage with their last write dates.

Allows the student to leave a message· for
Stanford.

44

FLOW

GE.T·<name>

HINT

KILL <name>

LIST

MERGE <name>

Generates and displays a flowchart
representation of the student's current
program. As the student steps through the
execution, the ·element of the flowchart
representing the current line blinks. This
option is under development, and will be
available only on CRT display terminals.

Retrieves the ... named program . from permanenJ;
storage. The retrieved program replaces the
current program (if any) in the student's
core space.

Prints a hint, if any remain. Someta.sks
have more than one associatEldwi.th thelllin
the network; a few have no hints. When a
student asks for a hint, BIp internally
flags the hint that it supplies. Another
request for a hint, during work on the same
task, initiates a search for an associated
hint not yet flagged.

Erases J;he namecl . program from permanent
storage. Students cannot affect each
other's fil,estorage,.soindiscriminate use
of this command can inconvenience only the
KILLer himself.

Prints the current program in the order of
its line numbers. Students are·encouraged
to LIST often, in order .to avoid confusion
between· what. was intended and what actually
exists in the program.

Retrieves the named program from permanent
storage and adds it to the current program.
Unlike GET, MERGE does not erase the current
program before retrieval. MERGE allows the
student to develop larger programs, a
section .at a time, testing and saving
separate pieces' ..the program as he goes. BIP
informs him of· •instances in which a line
from permanent storage replaces or
duplicates the current line (i.e., where the
two programs have one or more identically
numbered lines).

45

MODEL

MORE

REPORT

RES

RUN

Prints a typieal solution to the current
task, only after all available hints and
subtasks have been presented. The student
may also request . the model solution to a
task other than the current task by typing
its'name as part of the MODEL command.

Continues the presentation of a task. If
all parts of the task have been completed,
theposttask· interview,is presented. Some
tasks require that<the·student complete two
or three closely related. ,problems , calling
for a modification or expansion of the
original·program.These "must-follow" tasks
are referred to as MORTs,. both internally in
BIP and in the curriculum listing given in

·AppendixB. The MORE routine will not aJ.low
a student. to advance, either to a MORT or to
a new task, . unless·he has successfully run
his current program.;

Provides Stanford programmers and designated
course instructors a summary of student
activity; either by school (currently DeAnza
or the University of San' Francfsco) or for
all students using BIP. The report shows
student number,name, number of sessions and
total hours accum1.11atedon the course, and
number of tasks cQmpleted.

Terminates all currently entered tasks,
without giving the student credit for
completing them. This option allows him to
extricate himself £rom a nest of tasks,
should the need'srtse.

E,kecutes the current· programo

SAVE <name> Stores the
Saving the
not affect

current program for ·future use.
program in permanent storage does
the current version in any way.

46

SCR

SIMPER

SUB

TASK <name>

Eras.esthe current program'

Allows the BIP student to use a simulated
three-register"machine-described -in Lorton &
Slimick (1969). The SIMPER option allows
instructors to demonstrate. the "differences
between BASIC and a machine language by
assigning problems to be ~olved with both.

presentsasubtask,,.-- a>smaller part needed
to complete the .-current task at the
student's request. ,Upon· completion of a
subtask, BIP returns the student
automatically and explicitly to the larger
task.

Presents the 'student's next programming
task;' He may request a task of his choice
by supplying its name; otherwise, BIP
selects the next task.on the basis of the
student's history on previous tasks.

TRACE Executes a. pl;ogram, but
numbers and variables
progl;esses.

prints
as

out line
execution

WHAT

WHEN

WHO

Gives the name of the current task and
(optionally) prints the problem text again.
The student may request the text of a
different task by supplying its name.

Prints the cUl;rent date and time.

Prints the name of the· student signed on to
the terminal. This option was included
because of past experience with groups of
students sharing a small number of
terminals, and is intended to prevent the
inadvertent termination of unfinished
session.

47

REFERENCES

Albrecht, R.L., Finkel, L., & B:rown. J. R. BASIC, New York;
Wiley, 1973;

Beard, M;lj:., Lorton, p., Jr., Searle, B. W., &Atkinson,R. C.
Comparison of student performance and attitude under
three ._lesson selection strategies -in -computer-assisted
instruction, (Technical Report No. 222)Startford,
Calif.: -Institute for Nathematical Studies in the
Social Sciences, Stanford-University, 1973.

Carbonell, J. R. AI in CAl: An _artificial intelli~ence

approach to computer-assisted instructiort. IEEE
Transactions ~ Man-Machine Systems, 197Q,MMS...11,
190-202.

Collins, A.M., C~rbOnell, J .R. • & Warnock, E.
and synthesis- of tutorial dialogues.
Report No. 2631) Cambridge, Mass.: Bolt.
Newman, 1973.

Coan, J.S. BASIC; New York: Hayden Book, 1970.

H. Analysis
(Technical

Beranek and

Feldman.J. A;, Low, J, R., Swinehart.D.
Recent developments in ~.

Conference, 1972, 1193-1202.

C•• & Taylor,
AFIPS Fall

R. H.
Joint

Floyd, R.W. Notes ~programming and~ ALGOL
Stanford. Calif.: Computer Science
Stanford University, 1971,

W language,
Departljlent,

Forsythe, A.1.,Keenan. T. A., .Orgartick, E. 1., & Sternberg,
W. Computer science: A first course.- New York: Wiley,
1969.

48

Friend, J. Computer-assisted . instruction in programming:!
curriculum description. (Technical Report No. 211).
Stanford, Calif.: Institute for Mathetical Studies in
the Social Sciences, Stanford University, 1973.

Goldberg, A. Computer-assisted instruction: The, application
of theorem-proving to adaptive response analysis.
(Technical Report No. 203) Stanford, Calif.: Institute
for Mathematical Studies in the Social Sciences,
Stanford University, 1973.

Kemeny, J. G. & Kurtz, T. E. BASIC programming. (2ndep)NeW
York: Wiley, 1971.

Kimball, R. B. Self-optimizing computer-assisted tutoring:
Theory.' and practice. (Technical Report No. 206)
Stanford; Calif.: Institute for . Mathematical Studi.es
in the Bocial Sciences, Stanford \Jniversity,,1973.

Koffman, E. B. & Blount, S. !modular system forgeIlerative
CAl inmachine language programming, Storrs; Conn .• :
University 'of C()nnecticut, School of. lj:ngineerin,g,
1973.

Lorton"P., Jr. & Slimick, j. Computer based instruction in
computer programming a symbol manip\1lat:ion-list
processing approach. Proceedings of the Fall Joint
Computer Conference, 1969,535-544.

Manna, Z. Program schemas. In A.V. Aho (Ed.), Cufrents:l.Ilthe
theory of computing, EngleWOOd Cliffs, N.J.: Prentice
Hall, 1973.

Nievergelt, J., Reingold, E. M.,· & Wilcox, T. R. The
automation of introductory computer science courses.
Proceedings of the International· Computing,SyJ1ljl0sium,
1973.

People's Computer Company Newsletter, Box 310, Menlo Park,
Calif.

Nolan, R.L. Introduction to computing through the BASIC
language. New York: Holt, Rinehart and Winston, 1969.

49

Smith, R. TENEX SAIL. Technical' Report in preparation.
Stanford, Calif.: Institute for Mathematical Studies
in the Social Sciences, Stanford University, 1974.

Swinehart, D. C., & Sproull, R. F. SAIL, Stanford, Calif:
Stanford Artificial Intelligence Laboratory Operating
Note 57.2, Stanford University, 1971.

VanLehn, K. , SAIL
Artificial
University,

User Manual,
Intelligence

1973.

Stanford, Calif: Stanford
Laboratory, Stanford

Wiener, H., & Ross, B.
Lawrence Hall of
1972.

BASIC workbook. Berkeley, Calif.:
Science, University of California,

50

DISTRIBUTION LIST

4 Dr. Marshall J. Farr, Director
Personnel & Training Research Programs
Office of Naval Research
Arlington, VA 22217

1 Director
ONR Branch Office
495 Swnmer Street
Boston, MA 02210
Attn: Psychologist

1 Director
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101
Attn: E. E. Gloye

1 Director
ONR Branch Office
536 South Clark Street
Chicago, IL 60605
Attn: M. A. Bertin

1 Office of Naval Research
Area Office
207 West 24th Street
New York, NY 10011

6 Director
Naval Research Laboratory
Code 2627
Washington, DC 20390

12 Defense Documentation Center
Cameron Station, BUilding 5
5010 Duke Street
Alexandria, VA 22314

1 Chairman
Behavioral Science Department
Naval Command and Management Division
U.S. Naval Academy
Luce Hall
Annapolis, MD 21402

1

1 Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054
Attn: Dr. N. J. Kerr

1 Chief of Naval Training
Naval Air Station
Pensacola, FL 32508
Attn: Capt. Bruce Stone, USN

1 LCDR Charles J. Theisen, Jr., MSC
4024
Naval Air Development Center
Warminster, PA 18974

1 Commander
Naval Air Reserve
Naval Air Station
Glenview, IL 60026

1 Commander
Naval Air Systems Command
Department of the Navy
AIR-413C
Washington, DC 20360

1 Mr. Lee Miller (AIR 413E)
Naval Air Systems Command
5600 Columbia Plke
Falls Church, VA 22042

1 Dr. Harold Booher
NAVAIR 415C
Naval Air Systems Command
5600 Columbia Pike
Falls Church, VA 22042

1 Capt. John F. Riley, USN
Commanding Officer
U.S. Naval Amphibious School
Coronado, CA 92155

1 Special Assistant for Manpower
OASN (M&RA)
The Pentagon, Room 4E794
Washington, DC 20350

1 Dr. Richard J. Niehaus
Office of Civilian Manpower

Management
Code 06A
Department of the Navy

cWashington, DC 20390

1 CDR Richard L. Martin, USN
COMFAIRMIRAMAR F-14
NAS Miramar, CA 92145

1 Research Director, Code 06
Research and Evaluation Department
U.S. Naval ExaminingCehter
Great Lakes, IL 60088
Attn: c. S. Winiewicz

1 Chief
Bureau of Medicine and Surgery
Code 413
Washington, DC 20372

1 Program Coordinator
Bureau of Medicine and Surgery
(Code 71G)
Department of the Navy
Washington, DC 20372

1 Commanding Officer
Naval Medical Neuropsychiatric

Research Unit
San Diego, CA 92152

1 Dr. John J. Collins
Chief of Naval Operations (OP-987F)
Department of the Navy
Washington, DC 20350

1 Technical Library (Pers-llB)
Bureau of Naval Personnel
Department of the Navy
Washington, DC 20360

10 Dr. James J. Regan, Technical Director
Navy Personnel Research and Develop

ment Center
San Diego, CA 92152

2

1 Commanding Officer
Navy Personnel Research and

Development Center
San Diego, CA 92152

1 Superintendent
Naval Postgraduate School
Monterey, CA 92940
Attn: Library (Code 2124)

1 Mr. George N. Graine
Naval Ship Systems Command
(SHIPS 047C12)
Department of the Navy
Washington, DC 20362

1 Technical Library
Naval Ship Systems Command
National Center, Building 3
Room 3S08
Washington, DC 20360

1 Commanding Officer
Service School Command
U.S. Naval Training Center
San Diego, CA 92133
Attn: Code 303

1 Chief of Naval Training Support
Code N-21
Building 45
Naval Air Station
Pensacola, FL 32508

1 Dr. William L. Maloy
Principal Civilian AdVisor for

Education and Training
Naval Training Command, Code OIA
Pensacola, FL 32508

1 Dr. Hanss H. Wolff
Technical Director (Code N-2)
Naval Training Equipment Center
Orlando, FL 32813

1 Mr. Arnold Rubinstein
Naval Material Command

(NMAT-03424)
Room 820, Crystal Plaza No. 6
Washington, DC 20360

1 Dr. H. Wallace Sinaiko
c/o Office of Naval Research (Code 450)
Psychological Sciences Division
Arlington, VA 22217

1 Dr. Martin F. Wiskoff
Navy Personnel Research and

Development Center
San Diego, CA 92152

1 Dr. John Ford, Jr.
Navy Personnel Research and

Development Center
San Diego, CA 92152

1 Technical Library
Navy Personnel Research and

Development Center
San Diego, CA 92152

1 Commandant
U.S. Army Institute of Administration
Attn: EA
Fort Benjamin Harrison, IN 46216

1 Armed Forces Staff College
Norfolk VA 23511
Attn: Library

1 Director of Research
U.S. Army Armor Human Research Unit
Attn: Library
Building 2422 Morade Street
Fort Knox, KY 40121

1 U.S. Army Research Institute for the
Behavioral and Social Sciences

1300 Wilson Boulevard
Arlington, VA 22209

1 Commanding Officer
Attn: LTC Montgomery
USACD.G - PASA
Ft. Benjamin Harrison, IN 46249

3

1 Dr. John L. Kobrick
Military Stress Laboratory
U.S. Army Research Institute of

Environmental Medicine
Natick, MA 01760

1 Commandant
U.S. Army Infantry School
Attn: ATSIN-H
Fort Benning, GA 31905

1 U.S. Army Research Institute
Commonwealth Building, Room 239
1300 Wilson Boulevard
Arlington, VA 22209
Attn: Dr. R. Dusek

1 Mr. Edmund F. Fuchs
U.S. Army Research Institute
1300 Wilson Boulevard
Arlington, VA 22209

1 Chief, Unit Training and Educational
Technology Systems

U.S. Army Research Institute for
the Behavioral and Social Sciences

1300 Wilson Boulevard
Arlington, VA 22209

1 Commander
U.S. Theater Army Support Command,

Europe
Attn: Asst. DCSPER (Education)
APO New York 09058

1 Dr. Stanley L. Cohen
Work Unit Area Leader
Organizational Development Work Unit
Army Research Institute for Behavioral

and Social Sciences
1300 Wilson Boulevard
Arlington, VA 22209

1 Dr. Leon H. Nawrocki
U.S. Army Research Institute
Rosslyn Commonwealth Building
1300 Wilson Boulevard
Arlington, VA 22209

Air Force

1 Dr. Martin .Rockway
Technical Training Division
Lowry Air Force Base
Denver, CO 80230

1 Maj. P. J. DeLeo
Instructional Technology Branch
AF Human Resources Laboratory
Lowry Air Force Base, CO 80230

1 Headquarters, U.S. Air Force
Chief, Personnel Research and Analysis

Division (AF/DPSY)
Washington, DC 20330

1 Research and Analysis Division
AF/DPXYR - Room 4C200
Washington, DC 20330

1 AFHRL/AS (Dr. G. A. Eckstrand)
Wright~PattersonAFB
Ohio 45433

1 AFHRL (AST/Dr. Ross L. Morgan)
Wright-Patterson Air Force Base
Ohio 45433

1 AFHRL/MD
701 Prince Street
Room 200
Alexandria, VA 22314

1 AFOSR(NL)
1400 Wilson Boulevard
Arlington, VA 22209

1 Commandant
USAF School of Aerospace Medicine
Aeromedical Library (sUL-4)
Brooks AFB, TX 78235

1 Capt. Jack Thorpe, USAF
Department of Psychology
Bowling Green State University
Bowling Green, OH 43403

4

1 Headquarters, Electronic Systems
Division

Attn: Dr. Sylvia R. Mayer/MClT
LG Hanscom Field
Bedford, MA 01730

1 Lt. Col. Henry L. Taylor, USAF
Military Assistant for Human

Resources
OAD(E&LS) ODDR&E
Pentagon, Room 3D129
Washington, DC 20301

Marine Corps
1 Col. George Caridakis

Director, Office of Manpower
Utilization

Headquarters, Marine Corps (AOIH)
MCB
Quantico, VA 22134

1 Dr. A. L. Slafkosky
Scientific Advisor (Code Ax)
Commandant of the Marine Corps
Washington, DC 20380

1 Mr. E. A. Dover
Manpower Measurement Unit (Code MPI)
Arlington Annex, Room 2413
Arlington, VA 20370

Coast Guard

1 Mr. Joseph J. Cowan, Chief
Psychological Research Branch (P-l)
U.S. Coast Guard Headquarters
400 Seventh Street, SW
Washington, DC 20590

Other DOD

1 Lt. Col. Austin W. Kibler, Director
Human Resources Research Office
Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

1 Mr. Helga Heich, Director
Program Management, Defense Advanced

Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

1 Mr. William. J. Stormer
DOD Computer Institute
Washington Navy Yard
Building 175
Washington, DC 20374

1 Mr. Thomas C. O'Sullivan
Human Resources Research Office
Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Other Government

1 Office of Computer Information
Institute for Computer Sciences

and Technology
National Bureau of Standards
Washington, DC 20234

1 Dr. Eric McWilliams, Program Manager
Technology and Systems, TIE
National Science Foundation
Washington, DC 20550

Miscellaneous

1 Dr. Scarvia B. Anderson
Educational Testing Service
17 Executive Park Drive, N.E.
Atlanta, GA30329

1 Dr. Bernard M. Bass
University of Tochester
Management Research Center
Rochester, NY 14627

1 Mr. Edmund C. Berkeley
Berkeley Enterprises, Inc.
815 Washington Street
Newtonville, MA 02160

1 Dr. David G. Bowers
University of Michigan
Institute for Social Research
P. O. Box 1248
Ann Arbor, MI 48106

5

1 Mr. H. Dean Brown
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 94025

1 Mr. Michael W. Brown
Operations Research, Inc.
1400 Spring Street
Silver Spring, MD 2091Q

1 Dr. Ronald P. Carver
American Institutes for Research
8555 Sj_xteenth Street
Silver Spring, MD 20910

1 Century Research COrPoration
4113 Lee Highway
Arlington, VA 22207

1 Dr. Kenneth E. Clark
University of Rochester
College of Arts and Sciences
River Campus Station
Rochester, NY 14627

1 Dr. Allan M. Collins
Bolt Beranek and Newman
50 Moulton Street
Cambridge, M-~ 02138

1 Dr. Ren~ V. Dawis
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

2 ERIC
Processing and Reference Facility
4833 Rugby AlTenue
Bethesda, MD 20014

1 Dr. Victor Fields
Department of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. Edwin A. Fleishman
American Institutes for Research
8555 Sixteenth Street
Silver Spring, l;ffi 20910

1 Dr. Duncan N. Hansen
Memphis State University
Bureau of Educational Research and

Services
Memphis, TN 38152

1 Dr. Robert Glaser, Director
University of Pittsburgh
Learning Research and Development

Center
Pittsburgh, PA 15213

1 Dr. Albert S. Glickman
American Institutes for Research
8555 Sixteenth Street
Silver Spring, MD 20910

1 Dr. Henry J. Hamburger
University of California
School of Social Sciences
Irvine, CA 92664

1 Dr. Richard S. Hatch
Decision Systems Associates, Inc.
11428 Rockville Pike
Rockville, MD 20852

1 Dr. M. D. Havron
Human Sciences Research, Inc.
Westgate Industrial Park
7710 Old Springhouse Road
McLean, VA 22101

1 Human Resources Research Organization
Division #3
P. O. Box 5787
Presidio of Monterey, CA 93940

1 Human Resources Research Organization
Division #4, Infantry
P.O. Box 2086
Fort Benning, GA 31905

1 Human Resources Research Organization
Division #5, Air Defense
P.O. Box 6057
Fort Bliss, TX 79916

6

1 Human Resources Research Organization
Division #6, Library
P.O. Box 428
Fort Rncker, A1 36360

1 Dr. Lawrence B. Johnson
Lawrence Johnson and Associates, Inc.
200 S. Street, N.W., Suite 502
Washington, DC 20009

1 Dr. Norman J. Johnson
Carnegie-Mellon University
School of Urban and Pnblic Affairs
Pittsburgh, PA 15213

1 Dr. David Klahr
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

1 Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Cortona Drive
Santa Barbara Research Park
Goleta, CA 93017

1 Dr. Andrew R. Molnar
Technological Innovations in

Education
National Science Foundation
Washington, DC 20550

1 Dr. Leo Munday, Vice President
American College Testing Program
P.O. Box 168
Iowa City, IA 52250

1 Dr. Donald A. Norman
University of California, San Diego
Center for Human Information

Processing
La Jolla, CA 92037

1 Mr. Luigi Petrullo
2431 North Edgewood Street
Arlington, VA 22207

1 Dr. Diane M. Ramsey-Klee
R-K Research & System Design
3947 Ridgemont Drive
Malibu, CA 90265

1 Dr. Joseph W. Rigney
Behavioral Technology Laboratories
University of Southern California
3717 South Grand
Los Angeles, CA 90007

1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. George E. Rowland
Rowland and Company, Inc.
P.O. Box 61
Haddonfield, NJ 08033

1 Mr. A. J. Pesch, President
Eclectech Associates, Inc.
P.O. Box 178
North Stonington, CT 06359

1 Dr. Arthur I. Siegel
Applied Psychological Services
Science Center
404 East Lancaster Avenue
Wayne, PA 19087

1 Mr. Dennis J. Sullivan
725 Benson Way
Thousand Oaks, CA 91360

1 Dr. Benton J. Underwood
Northwestern University
Department of Psychology
Evanston, IL 60201

1 Dr. David J. Weiss
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

1 Dr. Anita West
Denver Research Institute
Universi ty of Denver
Denver, CO 80210

1 Dr. Kenneth Wexler
University of California
School of Social Sciences
Irvine, CA 92664

7

1 Dr. John Annett
The Open University
Milton Keynes
Buckinghamshire, ENGLAND

1 Dr. Milton S. Katz
MITRE Corporation
Westgate Research Center
McLean, VA 22101

1 Dr. Charles A. Ullmann
Director, Behavioral Sciences

Studies
Information Concepts, Inc.
1701 N. Ft. Myer Drive
Arlington) VA 22209

1 Dr. Dexter Fletcher
Department of Psychology
P. O. Box)+31+8
Universi to' of Illinois, Chicago

Circle
Chicago, IL 60680

1 Dr. Alfred F. Smode, Staff
Consultant

Training Analysis and Evaluation
Group

Naval T~a~ing Equipment Center
Code N-t:lO'l'
Orlando,]'L 32813

